Investigating the Carbon footprint of Euro-Par

Danilo Carastan-Santos¹, Krzysztof Rzadca², Rizos Sakellariou³, Leonel Sousa⁴, **Denis Trystram¹**

¹MIAI and Univ. Grenoble Alpes, Grenoble INP, Inria, LIG, France danilo.carastan-dos-santos@inria.fr, denis.trystram@univ-grenoble-alpes.fr

²Google and Univ. of Warsaw, Poland krzadca@gmail.com

⁴INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal las@inesc-id.pt

³Department of Computer Science, University of Manchester, UK rizos@cs.man.ac.uk

August 25, 2022

Euro-Par 2022

Motivation

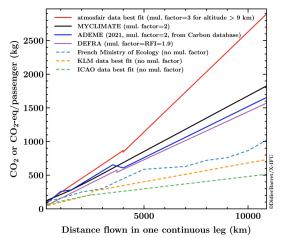
- All of us experienced the global warming. It is a fact.
- What our community should do and, in case, how?

The authors

Euro-Par 2022

Euro-Par 2020 and 2021

- Euro-Par 2020 and 2021 were **virtual**
- Question: What were the savings in CO2 emissions caused by virtual Euro-Par 2020 and 2021?
- Main factor studied: Conference travel (around 85% of the total carbon footprint of conferencing)¹

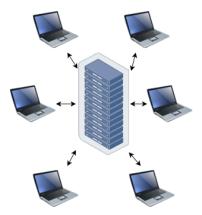


¹ (Yanqiu Tao et al. "Trend towards virtual and hybrid conferences may be an effective climate change mitigation strategy". In: *Nature communications* 12.1 [2021], pp. 1–14)

3/15

Methodology: Travel emissions estimation

- Flight emissions calculator²
- Numerous models fitted with real flight data³
- Approximate travel emissions of Euro-Par 2020 and 2021 as if they were in person



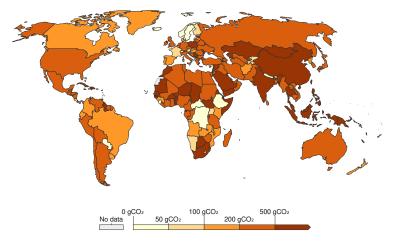
²https://travel-footprint-calculator.irap.omp.eu/

³ (Didier Barret. "Estimating, monitoring and minimizing the travel footprint associated with the development of the Athena X-ray Integral Field Unit". In: *Experimental Astronomy* 49.3 [2020], pp. 183–216)

Methodology: Virtual emissions estimation

- Two methods:
 - One method used in an astronomy conference⁴
 - Another method based on the energy cost of video streaming⁵
- Energy consumption from three components: Server, network, and viewing device
- Usage phase only
- Considering the carbon intensity of electricity production

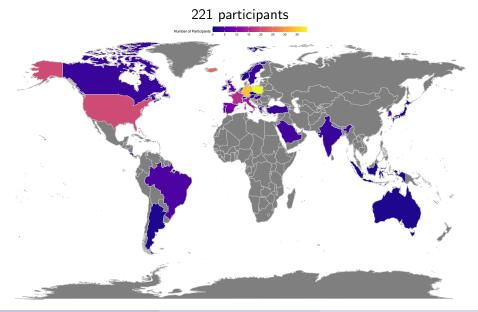
⁵ (IEA. The carbon footprint of streaming video: fact-checking the headlines. 2020. URL: https://www.iea.org/commentaries/the-carbon-footprint-of-streaming-video-fact-checking-the-headlines [visited on 01/17/2022])

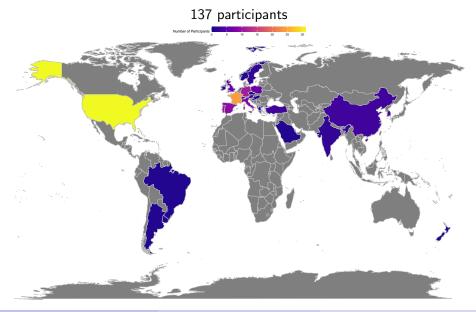

5/15

⁴ (Leonard Burtscher et al. "The carbon footprint of large astronomy meetings". In: *Nature Astronomy* 4.9 [2020], pp. 823–825)

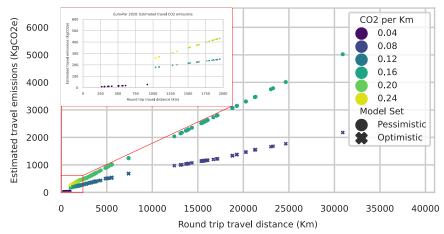
Carbon intensity of electricity generation

Carbon intensity of electricity, 2021

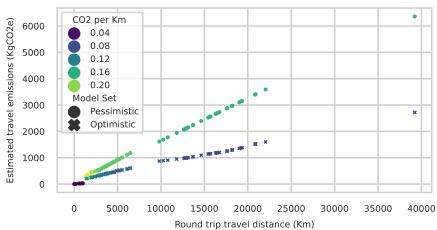

Carbon intensity measures the amount of greenhouse gases emitted per unit of electricity produced. Here it is measured in grams of CO₂ per kilowatt-hour of electricity.


Source: Ember Climate (from various sources including the European Environment Agency and EIA) OurWorldInData.org/energy • CC BY

Our World in Data


Participation - Euro-Par 2020

Participation - Euro-Par 2021



Results - Flying Euro-Par 2020

Euro-Par 2020: Estimated travel CO2 emissions

Results - Flying Euro-Par 2021

Euro-Par 2021: Estimated travel CO2 emissions

In-person:

Year	Model Set	Estimated Emissions (kgCO2eq)	Equivalent Emissions (U.S. homes' energy use for one year ⁶)	Equivalent to Carbon Sequestered by $(m^2 \text{ of U.S. forests in one year}^7)$
2021	Pessimistic	173252.45	21.8	8.30 · 10 ⁵
2021	Optimistic	84616.6	10.7	$4.05 \cdot 10^{5}$
2020	Pessimistic	214128.06	27	$1.02\cdot 10^6$
2020	Optimistic	106453.20	13.4	$5.10 \cdot 10^{5}$

Virtual:

Year	Method	Emissions (kgCO2eq)				Equivalent to Carbon Sequestered by
rear	Method	Laptop	Network	Server	Total	$(m^2 \text{ of U.S. forests in one year})$
2021	Extended IEA	9.26	6.48	1.74	17.50	84.98
2020	Extended IEA	9.07	9.19	3.591	21.86	105.21
2021	Extended Burtscher et al.	12.63	11.27	3.73	27.64	133.54
2020	Extended Burtscher et al.	12.37	15.99	12.16	40.53	194.24

⁶US Environmental Protection Agency. *Greenhouse Gas Equivalencies Calculator*. 2022. URL: https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator (visited on 07/18/2022).

⁷Agency, Greenhouse Gas Equivalencies Calculator.

- As, expected, it is clear that the impact of physical meetings is much higher that virtual ones, in the order of **tens of thousands lower**
- The global impact of a usual Euro-Par is significant (Per capita annual CO2 budget to reach the Paris Agreement: 1.5tCO2e⁸)

⁸Source: https://www.atmosfair.de/en/green_travel/annual_climate_budget/

Pros:

- They are good for the climate
- They allow more participants

Cons:

- Humans need human interactions!
- Hard to replace face-to-face meetings by virtual ones
- Diversity and team building effects
- Restricts the exchanges to the conference topic

Open the discussion

The authors

Some ways to react...

- By constraints
 - Multiple (local) hubs One per continent
 - $\bullet\,$ Always take the train for less than 1000/1500 Km distances or less than one day
 - Reduce in-person events: one over three years
 - Reduce the number of events per year
- By incentive mechanisms
 - Communicate on the impact
 - Choose the venues with small carbon footprint
 - Gain efficiency in staying longer. Half fees if the participant provides proof of extended (professional) stays
 - Ask for carbon footprint estimation for the new bids

Should we rely only on individual behavior/opinions on the matter?