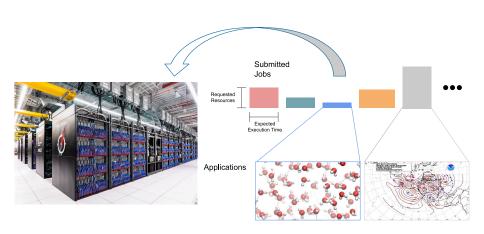
Job scheduling with jobs' energy profiles

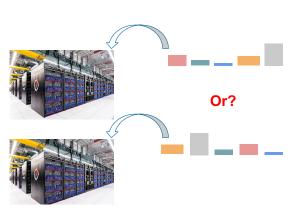
Danilo Carastan-Santos


¹Université Grenoble Alpes, Grenoble INP, Inria, LIG, France email:danilo.carastan-dos-santos@inria.fr

April 11, 2023

Outline

- Overview of the problem
 - High-Performance Computing (HPC) resource management
 - HPC job scheduling
- Monitoring/gathering jobs' energy consumption
 - Monitoring tools (wattmeters, RAPL)
 - A use case
- 3 Job scheduling with energy information
 - Research challenges/perspectives


Overview of the problem

Overview of the problem

Overview of the problem

- Add a new jobs' data: Jobs' power consumption
- Add new objectives:
 - Respect a platform power cap
 - As low power as possible

Our use-case

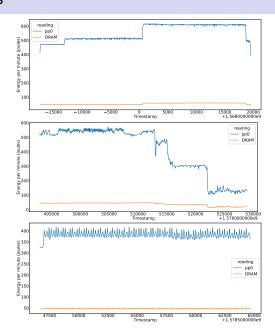
- Gricad^a large-scale computing platform
- Dahu cluster (Grenoble site)
 - Each node: dual-socket Intel Xeon Gold 6130 (16 physical cores, 32 virtual)
 - Nodes' energy data collected with Colmet^b(Oar-team in Grenoble)

ahttps://gricad.univ-grenoble-alpes.fr/

bhttps://github.com/oar-team/colmet

Monitoring the energy consumption of the Dahu Cluster²

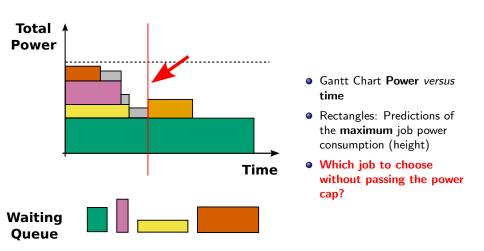
- Two sources of data:
 - Jobs (OAR, upper graph): processing time and number of processors
 - Energy consumption (Colmet, lower graph)

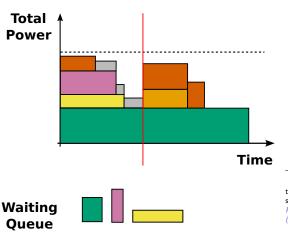

Problems: Jobs that share a node, jobs that run in multiple nodes, incomplete energy traces, container jobs¹

¹ Jobs that host other jobs inside. This is a standard OAR feature

²Example illustrating a single socket of a Dahu node, with hyperthreading enabled.

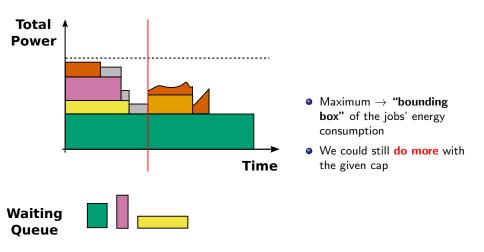
Some job energy profiles

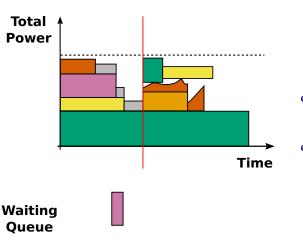

- We can see what's inside the "job box" regarding the energy consumption
- We want to integrate this in the RJMS to do online scheduling decisions
- This requires predicting the jobs' energy profile
 - Mean/Median/Max: "easy"
 - Full profile: "complicated" (this is why it is interesting)


8 / 15

Danilo Carastan-Santos April 11, 2023

An example with maximum job power consumption

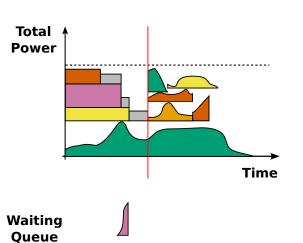

An example with maximum job power consumption


- Gantt Chart Power versus time
- Rectangles: Predictions of the maximum job power consumption (height)
- SoA: Best-fit^a
- Better ways to choose jobs? e.g., Knapsack

^aRyuichi Sakamoto et al. "Analyzing resource trade-offs in hardware overprovisioned supercomputers". In: 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE. 2018, pp. 526-535.

A more sophisticated approach

A more sophisticated approach



- Maximum is just a "bounding box" of the jobs' energy consumption
- We could still do more with the given cap

12 / 15

Danilo Carastan-Santos April 11, 2023

A more sophisticated approach

- Each job has its own energy profile
- We can potentially do more with the given power cap
- Questions
- Predict the profile before job execution?
- Forecast the energy profile on the fly?
- Choose the appropriate jobs?

To conclude

 There is room for improving power-capped HPC platforms if we have information about the jobs' energy profile

To conclude

- There is room for improving power-capped HPC platforms if we have information about the jobs' energy profile
- Many challenges need to be addressed

To conclude

- There is room for improving power-capped HPC platforms if we have information about the jobs' energy profile
- Many challenges need to be addressed
 - HPC workload data with energy information
 - Jobs energy profile predictions
 - Efficient scheduling methods

To conclude

- There is room for improving power-capped HPC platforms if we have information about the jobs' energy profile
- Many challenges need to be addressed
 - HPC workload data with energy information
 - Jobs energy profile predictions
 - Efficient scheduling methods
 - All of the above remaining frugal (lightweight)

Job scheduling with jobs' energy profiles Danilo Carastan-Santos

Contact

- Email: danilo.carastan-dos-santos@inria.fr
- Website: https://danilo-carastansantos.github.io/ (QR code on the right)

